Implications of Top-Down Atmospheric
Measurements in Oil and Gas Basins
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Global methane (CH,) monitoring
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e Lifetime ~ 9-10 years

* Potent GHG, GWP: 28 /100 years and 84 /20 years (IPCC 2013
* Background in northern hemisphere ~ 1850 ppb
* NOAA measurement uncertainty +1ppb

* 17% of total direct radiative forcing from long-lived GHG in 2013

Cooperative Measurement Programs
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NOAA ESAL Carbon Cycle operates 4 measurement programs. Sem-continuous measurements are made at 4 baseline observatories, a fow surface sites and
from tall towers. Discrete surface and akrcraft samples are measured in Boulder, CO. Presently, atmosphenc carbon dioxide, methane, carbon monaxide,

hydrogen, nitrous oxide, suthr hexafluoride, the stabie

isolopes of carbon dioxide and methane, and halocarbon and volatile organic compounds are measured
Contact: Dr. Pietor Tans, NOAA ESRL Carbon Cycle, Boulder, Colorado, (303) 4976678, pleter tans@noaa gov, hitp//www.ess noaa. gov/gmd/cogy/

Global Distribution of Atmospheric Methane

The of the

NOAA ESRL Carbon Cycle

Carbon Cycle, Boulder, Colorado, (303) 497-6228, ed.

methane in the marine boun

ndary layer. Data from the Carbon Cycle
cooperative air sampling network were used. The surface re epresems data smoothed in time and latitude. Contact: Dr. Ed Diugokencky, NOAA ESRL

Gov, hitp://www.est.noaa.
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Potential air impacts
of emissions at various scales




U.S. NG Systems: A large infrastructure
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Multiplication of surface operations

Based on EIA U.S. statistics
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Well drilling and stimulation
Well head
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What’s in natural gas?
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Emissions Assessment Tools

Inventory Approach

* Scalable, “easy” to update, information at process-level needed to prioritize
mitigation efforts

* Components:

— Activity Data

* Not clear how accurate/up-to-date some of them are
— Ex: pneumatic devices (comparing GHGRP 2012 reported emissions)

— Emission Factors and Emissions Speciation Profiles
* Many are old and based on a few snapshot measurements or model results
e Assumes Gaussian distribution of emissions around a “mean value”

— Emission Controls and their Actual Effectiveness

* 2012: Colorado reevaluated the capture efficiency of oil/condensate tanks
vapor recovery systems (100% to 75%) but Where is “true” problem?

* Green completion required for gas wells (what about associated gas and oil
wells?)



Is there a gross emitter problem ?

22 wells visited in DISH, TX all owned by the same
company and likely built around the same time (by the
same engineer?) suggest that the inventory method
which assumes that these wells all have the same
emissions will get it wrong.
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Are existing LDAR
programs sufficient?
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Atmospheric studies: Top-Down

Approach
* Target questions: GHG, CAPs, HAPs

— Emissions
— Ambient levels
— Chemistry
— Dispersion
* Tools:
— In situ measurements and sampling
— Remote Sensing (Satellites)
— Forward and Inverse modeling




Can we detect NG emissions in the atmosphere?

CH, “cloud” from surface emissions

Ambient levels of CH,
measured by tower,
instrumented van or
aircraft downwind of the
area source reflect
emissions from oil and
gas production
operations




Long Term Measurements in the Boundary

Layer over the US
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1. Air samples collected at the Colorado (BAO) and Oklahoma
(SGP) sites have a distinctive strong hydrocarbon signature.
2. High quality (well calibrated) measurements show strong
correlation between several of the hydrocarbons (see next slide).



300 magl level sampling at Colorado Tower:

Multiple species analysis in midday discrete air samples
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NOAA studies in U.S. oil and gas plays

Ozone nonattainment areas Light

. 2014 2013 NOAA P3 (SENEX)
aircraft 2012 (UT, €O), 2013 (UT) NOAA Twin Otter Haynesville (LA), Fayetteville (AR),
Bakken, ND Marcellus (PA)(Peischl, submitted)
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Methane and VOC emissions from oil and gas operations in

Utah and Colorado estimated during aircraft intensives

leae'fj °f2'>"7‘jt2%alnze over Utah gas = NE Utah: Large emissions from O&G operations
j rig, a |- (Karion et al., GRL, 2013)
e = Based on data from one flight in 2012 : ~9% of the natural gas
0% produced in the East (mostly gas) portion of the Uintah Basin
o’ was leaked (WRAP/GAO ~ 5%)
o = Use of the top-down emission estimate for 2013 winter
: o campaign in WRF-Chem allowed model to match ambient VOC
Methane in Colorado’s Front levels observed at fixed measurement site (Ahmadov et al, |
Range, 5/25/2012 — review).
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= NE Colorado: Official inventories underestimate oil
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Example of Mobile Lab measurements:Not all pumpjack R .

engines perform equally wel poorly

Natural gas powered artificial lifts & their emission products in the Gilsonite Draw field,
NE Utah
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* Non-negligible fraction of the natural
539 80% gas used to power these engines can
leak to the atmosphere.
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Challenges for top-down approach

* Partitioning between different sources within a target
region
— Use of multiple species
e Attribution to specific processes
— Requires ground-based field work
* Interpretation of geographical differences not
completely straight-forward
— GAO 2010 report
— Allen et al., 2013
— NOAA top-down studies: dry vs wet gas?

* Need to combine different approaches at different
scales to assess sources when/where needed



Complication

Spatial? Scales of different emission
Scalel estimation products often do not overlap
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Source: G. Pétron CEMS: Continuous Emissions Monitoring System



Final remarks

 There is a strong need to better understand emissions
of GHG, CAP, and HAPs to

— Assess emissions impacts
— Support and evaluate effective emissions mitigation where
needed
* High quality long-term atmospheric chemical
measurements provide key information on sources
influencing an air shed

* Targeted field campaigns can provide an independent
check on inventory models and results and further
diagnose sources contributions



